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ABSTRACT 
 
StarCraft is one of the most famous Real-Time Strategy (RTS) games, and there have been several competitions 
based on AI bots. In this game, the player often gathers information about their enemy based on a scouting task and 
from that recognizes and prepares a good strategy to counter the enemy plan. However, these tasks are considered 
difficult to implement with AI bots. In this paper, heuristic methods are proposed to recognize enemy plans and 
calculate reasonable attack timing decision. We also propose an effective method of scouting by adopting a 
potential field. These approaches were applied to a StarCraft AI bot, this bot has won the first place in mixed 
division of Student StarCraft AI Tournament 2012(SSCAI), the result is also discussed in this paper. 
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1.  INTRODUCTION 
 
StarCraft is one the most popular RTS game in the recent decade, it was developed by Blizzard Entertainment in 
1998. Like many traditional RTS games, the complicated game play is not only difficult for human players to 
master, but also provides many challenging problems for AI research. The game starts with a main base and a few 
workers, players must send workers to gather resources and then produce more workers, build more expansions 
and train an army to destroy the enemy. However, this process requires not only a lot of skill, but also plenty of 
expert knowledge. In addition, the uncertainty created by the fog-of-war increases the challenge of game play, 
which means players also have to deal with imperfect information during game play. 

Besides  skillful macro-management and micro-control, there are still two other significant factors for winning 
a game in StarCraft. One is information collection and the other is precise judgment, including correct decision 
making and right attack timing. In the imperfect environment of game play, the only way to overcome the 
uncertainty is to keep sending units to gather information about the enemy. However, the scout unit is usually 
weak and easily becomes the attack target of the enemy, so a mechanism to keep the scout unit alive is necessary. 
In terms of decision making, however, since it heavily relies on plan recognition and expert bias, it is much more 
complex for bots to accomplish. Currently, the majority of bots in Starcraft are still depend on script strategies and 
use the same attack timing. The unchangeable plans usually result in a boring game, or even a loss. 
In this paper, in order to solve the problems above, we proposed a scouting mechanism for information collection. 

Particularly, we adopt a potential field to keep scout unit alive as long as possible. At the same time, flexible 
methods are taken to improve efficiency and effectiveness of the scouting task. As far as decision making, a 
“mental agent” is also implemented to tackle enemy plan recognition as well as the attack timing estimation. 
Instead of using complicated algorithms, our heuristic method is easier to apply and more effective especially at 
early stages of the game. 

Our bot -IceBot- is a StarCraft Terran bot based on multi-agent architecture. A finite state machine (FSM) is 
used in this project to control the bot's state transitions during game flow. We submitted our bot to SSCAI 2012, it 
was ranked 1st in the elimination bracket and 4th in the round robin tournament with over 80% win rate. 

The contributions of this paper are as follows: 
 Provide an extendible framework for easily creating strategy in StarCraft. 
 Provide an effective scouting mechanism to solve information gathering issue in RTS game. 
 Provide a heuristic method for recognizing enemy strategy and deciding attack timing. 
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Fig. 1.  System framework 
 

2.  RELATED WORK 
 
So far, much research has been done on different topics in StarCraft, basically they can be divided into unit 
navigation and strategy recognition. For unit navigation, research mainly focus on micromanagement in combat 
and early scouting. Including our previous work on unit micromanagement by adopting a Monte-Carlo method 
which based on multiple simulation to find the best choice (Wang et al., 2012), a Bayesian model for unit micro 
control (Synnaeve and Bessiere, 2011), a reinforcement learning for small-scale combat scenario (Wender and 
Watson, 2012), and a heuristic search is also applied to micromanagement (Churchill et al., 2012). As for strategy 
prediction, Gabriel et al. proposed a Bayesian model to predict opponents opening by scouting enemy’s 
technology trees and counting building numbers (Synnaeve and Bessiere, 2011), which has advantages to deal 
with imperfect information in the game. Park et al. applied various machine learning algorithms to predict 
opponents plans based on the scouted information (Park et al., 2012), they also proposed a heuristic rule to 
navigate the scout unit. In their work, an algorithm for navigating a scout unit was also proposed using a number of 
heuristic rules. Besides of collecting information from the game, a data mining approach is also applied for 
strategy prediction by researching the game replays (Weber and Mateas, 2009). 

In this paper, we also proposed the usage of a potential field in unit navigation. However, other than using 
potential field for micromanagement in combat (Hagelback, 2012), we mainly focus on navigating scouting unit in 
early game. Moreover, we also proposed a heuristic method for dramatically attack timing determination, which is 
still a rare but significant research despite the existence of considerable work. 
 
3.  METHODOLOGY 
 
3.1    System Framework 

 
We apply a multi-agent architecture to handle complex game play in our project. Each agent is responsible for one 
of several tasks, such as build task, attack task etc. Specifically, our agents can be functionally divided into four 
parts, say, build agent, combat agent, scout agent, and mental agent as shown in Figure 1. 
 
 Build Agent: This agent consists of several sub-managers, to accomplish basic tasks such as gather resources, 

construct buildings, and produce fighters. In order to avoid conflict between tasks, each task binds with a 
certain priority before being added to the task queue. Finally, through the collaboration between sub agents, 
tasks will be executed one by one to keep the game-flow going.  

 Combat Agent: Responsible for units’ behavior control and navigation. Various behaviors will be conducted 
depend on different game states and types of unit. It is also affected by mental agent on unit navigation.  

 Scout Agent: Consist of scout manager and information manager. For collecting and storing raw information of 
both sides (ours and opponent) in the game. Information gathering is conducted by scout agents, and keeps this 
knowledge in the information manager. This part will be explained in a later section. 

 Mental Agent: This agent is made up of the mental manager and the plan manager. It functions as the brain of 
all agents, including game flow control, game state recognition and all kinds of decision making. This part is 
also explained in a later section. 
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Fig. 2.  Examples of potential field generated by enemy units. The left one is a potential field generated 
by an enemy fighter while the right one is a potential field generated by an enemy building. Here 
MSR is enemy fighter’s maximum attack range. The negative value stands for repulsive force while positive 
value is attractive force 
 
3.2    Scout Agent 
 
The scout agent is one of the most significant agents in our bot, the flow chart is shown in Figure 3. 
 
3.2.1    Scouting in StarCraft 
 
Scouts are essential in the StarCraft game play, because of the existence of the fog-of-war, which covers the 
majority of the game map. For each player in the game, only a certain range is visible where his units (army or 
building) stay. Therefore, without sending reconnaissance units to enemy’s territory for gathering information, 
one will be blind and it will be difficult to come up with a tactical plan to defeat the opponent. One might possibly 
end the game without knowing the enemy’s base position. 

The method we propose consists of three steps. 
 

 Find the enemy’s main base. In StarCraft, each map has a certain number of start locations, and players will be            
assigned to any of them randomly. So in the first step, a recon unit just needs to search those locations one by 
one until it finds the enemy base.  

 After finding the enemy base, our scout unit begins to randomly move to the enemy base, and gathering 
information as much as possible. 

 If there are any enemy fighters inside the scout unit’s sight range, a potential field will be triggered to keep 
scout unit alive as long as possible. A repulsion force will be generate on each enemy unit, so that the scout unit 
will manage to avoid being attacked while keep up its scout behavior. 

 
3.2.2    Applying Potential Field for Scouting 
 
In our implementation when one or more enemy fighters come into therecon unit’s sight range, a potential field 
will be triggered immediately. Thus either attractive force or repulsion force is generated on every unit and terrain 
to affect recon’s moving path. 
 
 Recon Unit Movement: We calculate the potential field values in eight directions from the current position of 

the scouting unit. The agent then will move along the direction which holds the most attracting force in 
potential field. 

 Enemy Building: We encourage the scout unit to keep distance from constructions to decrease the possibility of 
being blocked by them. To achieve this, a repulsion force will be generated on the enemy’s buildings when the 
distance between scout unit and the building is smaller than the building’s size (Figure 2). 

 Enemy Fighter: In terms of enemy fighters and defensive towers, the scout unit should always stay out of their 
maximum attack range (MSR). In this case, a strong repulsion force is generated inside the enemy shooting 
range, while the position where is far from enemy will be slightly increased with the distance to encourage the 
scout unit run away from dangerous (Figure 2). 

 Neutral Unit and Terrain: In StarCraft, besides players’ units, there also have some neutral units, such as 
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animals and resource fields. These units are considered as obstacles when the potential field is active. In 
addition, we also add repulsion force to some special terrain, because they are also possible to block the scout 
unit when it’s moving. 

 

 
 
Fig. 3.  The scouting procedure 
 
3.3    Mental Agent 
 
Game-flow control and Finite State Machine: FSM is well-known and widely used in many areas for process 
control as well as modeling application behavior. In our case, FSM is applied to control the whole game process. 

Although there are no coercive rules of StarCraft game play, still there are some patterns that need to follow. 
For instance, players usually produce workers and construct basic buildings before training fighters. Thus, our bot 
always follows a fixed opening in the early stage of game. And after that, the transition between states heavily 
relies on scout agent and mental agent. A scout agent provides significant raw data, while a mental agent fusing 
those data and then triggers next state. 

Plan recognition: Enemy plan recognition is a critical part for subsequent decision make, without it a bot can 
only follow a simple script, and easily lose the game to the changeable opponents. However, suppose we already 
successfully finish the scout task, it is still difficult to fusing lots of raw data to predict enemy’s plan. In this case, 
a heuristic technique is applied in our bot. 
 
 Recognize from feature unit: Although there are various strategies in StarCraft game play depending on the 

player’s style and selected race, each strategy has some required constructions or fighters in general. Especially 
in the early stage of the game, since the unit number is much fewer than in the later game, this method is more 
efficient than a complicated algorithm. Therefore, we directly related a symbol building with a kind of strategy. 
That means, once the mental agent finds such kind of units or a certain combination of units in raw data, it will 
recognize the enemy’s intention quickly and pick the solution from predefined plans database. 

 Infer from economy estimation: In StarCraft, reserving too much resources is not encouraged. This is because 
reserve resources will delay the attack timing or even lose the game. So players should convert the resources to 
the military force as soon as possible in order to gain advantages. Therefore, based on this unwritten rule, an 
experienced player is capable to guess opponent’s plan without seeing any feature unit. 

 
We also applied this heuristic in our bot as a backup plan. Suppose our recon unit has already scouted the 

enemy base successfully in the early game, but we barely found any feature unit that is related to any kind of 
strategy. In this case, the mental agent will try to estimate the enemy’s current reserved resources with the 
following function: 
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In this formula, RR is the reserved resources of the enemy, TR is the total resources that enemy has collected so 

far and Pi is the price of each individual unit of enemy we have discovered. However, since it’s impossible for us to 
know how much resources that enemy has ever collected precisely, we just simply take ours as a reference because 
there is no big disparity between two players on the economy condition in the early game. 
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After calculating the enemy’s reserved resources, we compare it with a threshold B. The threshold B here can 
be a simple constant or a function related to the game time. Assuming that opponent never reserves resources, the 
condition RR > B is satisfied, this means the enemy is hiding some information from us (such as construct feature 
buildings somewhere else), the mental agent will take a defensive plan immediately to prevent any possible 
unaware attack. 

Attack timing estimation: Determine the right timing to launch an attack is also a challenging task for bots. So 
far, most of the bots still decide attack timing simply based on fixed game time or military size. However, the 
disadvantages of fixed attack timing is obvious. First of all, it is easy for the opponent to predict and allows the 
opponent to defeat the strategy after a few games. Secondly, one may lose many good chances to defeat his 
opponent before the fixed attack timing comes. Hence a mechanism of dynamically decide attack timing is 
necessary. 

Fighting value comparison: The most direct way to decide attack timing is to compare the number of fighters 
both sides. However, due to the various types of fighters, we should not simply calculate the military size. In this 
case, we propose a heuristic way to calculate fighting value for both sides by function (2): 
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where the FV (f) and Nf  represent the fighting value and the set of units of force f respectively. DPFi refer to 

damage per frame of fighter unit i and HPi is the hit-point. With this function, we do not just judge the military 
force by number, but it is actually based on the “value” of each fighter. Specially, for DPFi, we can calculate it 
based on the following function: 
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In this function, the DPF value of each fighter i is the damage of it divide to its weapon cool down time wcdi, 

which also called attack rate. However, knowing the fighting value of both players is still far from enough, because 
of the imperfect information in the game play. So in order to solve this problem, we also take the dead units number 
into consideration as a human player usually do. For that, we recalculate the fighting value of each force based on 
the followed function: 
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where RFV (f) and f
deadN  are the recalculated fighting value and the number of dead units of force f 

respectively. If the f
deadN of either side equal to 0, then the original FV (f) will be kept. Thus, we determine the 

attack timing when the following condition is satisfied: 
 
 )()( emenyRFVCourRFV  . (5) 

 
Here our and enemy represent our force and enemy force respectively. C is a coefficient constant value between 

two military forces. It is also a heuristic value for navigating our army’s attack target. So, if the value of C is high, 
which means our military force is much more powerful than enemy, then our army will aim at destroy enemy’s 
main base directly. Otherwise we should attack from enemy’s furthest expansion, because the resistance of a 
expansion is usually weaker than main base. Therefore we can not only to get rid of the risk of losing our army due 
to the underestimate enemy, but also have a chance to weaken enemy’s economy. 
 
4.  PERFORMANCE EVALUATION 
 
4.1    Module Evaluation 
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Our implementation uses BWAPI (BWAPI, 2012) to retrieve information and control StarCraft. Besides that, we 
also use two other add-ons for easier pre-processing and managing information retrieved from StarCraft. One is 
BWTA (BWTA, 2012), a popular terrain analyzer in StarCraft, the other one is BWSAL (BWSAL, 2012), a 
framework that already provides several useful functions for BWAPI. Because of a time restrain, our Build Order 
Manager is still heavily based on the original Build Order Manager from BWASAL, though it is still not very good 
and lacks functionality for cancelling training units and buildings. 
 

 
 
Fig. 4.  The win rate of our bot against three example bots with different races from BWAPI Ladder 
 

 
 
Fig. 5.  The survival time of the scout unit 
 

In the experiments, we first evaluated the performance of our rules, after that, we tried to evaluate the 
usefulness of some agent in our framework. To do this, we compared the performance of our bot against three 
strong and well-known bots from the BWAPI Ladder (a place where best StarCraft bots in the world play against 
each other): 
 
 Skynet_2.01: Protoss bot, currently ranked 3rd in BWAPI Ladder, first place in CIG StarCraft 2011 and 2012 

competition. This is a very aggressive bot with a good strategy in economy developing and unit controlling. 
 Krasi0_2.19: currently ranked 11th,it is the highest ranked Terran bot in BWAPI Ladder so far. 
 Killerbot_3: Zerg bot, currently ranked 1st in BWAPI Ladder. This one and another deviation of it (Killerbot2), 

both are Zerg bots, now currently ranked as first and second bot in the Ladder. 
 

We choose these as the opponents to measure our performance against all three races in StarCraft. Also, to 
evaluate the performance of each agent in our framework, we disabled it and pitted the modified AI against those 
bots from BWAPI Ladder again. The agents we tried to measure the usefulness are: 
  
 Scouting agent: No more scout behavior after knowing enemy’s base position.  
 Plan recognition manager in mental agent: Without plan recognition part in mental agent, the bot only follows 

scripted plans. 
 Attack timing decision in mental agent: Without attack timing decision manager in mental agent, bot always 

follow a fixed attack timing. The timing in the experiment was set when our supply used reached or over 100. 
 

Each experiment was run with 50 games, the win rates are shown in Figure 4. Figure 4 shows that our bot is 
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weak against Skynet, but it defeated both strong Terran and Zerg bots. Skynet took full use of the flexibility of 
Protoss, and the excellent macro control on economy and the micro control on army helped it seizes the advantage  
from the early game, which result in our loss even if fully understanding its plan. Killerbot is also an aggressive bot 
with a nice economy management as well as military control. However, the fixed strategy makes it defendable 
even if it ranks top on the BWAPI Ladder. In terms of Krasi0, it seemed weak against early rush strategy, except 
when it showed impressive performance and lots of intelligence during the game play. 

Also, from Figure 4 we can easily see the importance of each module. Against Protoss or Zerg, the win rates 
sinks drastically when a module is removed from complete version. However, against Krasi0, the win rate still stay 
high either without scout agent or plan recognition. The reason why is because our bot always take a rush strategy 
in the early game when against Terran opponent, which results in the game being over in a short time, so there was 
no room for either agent to function itself. 

There has been a huge difference between disable either the scout agent or the plan recognition manager. For 
the former, even though the scout task is terminated in the early game, plan recognition heuristic still works when 
any of our fighters discover enemy’s feature units, therefore the counter measures are still taken even though it 
might be late. On the contrary, if the plan recognition manager is disabled, there will be no reaction for our bot 
even if we already scouted successfully. 

In terms of attack timing manager, despite of the timing it provided not reasonable every time, it still 
significantly increase the win rate of our bot and shorten the game time. Obviously, the win rate decrease rapidly 
when the manager is disabled. Particularly, when our bot took an early rush strategy versus krasi0, the bot missed 
several attack timings and ended up with a loss eventually. Nevertheless, sometimes the fixed attack timing was 
coincidentally reasonable, therefore we still defeated the opponent occasionally. 
 
4.2    Potential Field Evaluation 
 
We evaluated the performance of potential fields in our bot by playing 10 games with StarCraft build-in AI from 
each race respectively. The reason why we didn't choose human player as experiment subject is that the survive 
time of recon unit heavily depend on the opponent’s micro-control skill. Since the skills of players vary from each 
other, it is hard to evaluate the real performance. 

After the scout unit spots the first enemy fighter in the enemy’s territory, we recorded the alive time until it was 
destroyed by enemy, see the result in Figure 5. 

The result shows the survival time of the scout unit varies from different races. The scout unit was able to run 
from enemy’s attack successfully at the beginning, but with the increasement of the enemy fighters, the scout unit 
could not avoid destruction soon after, especially when facing several long range attack enemies (such as Terran 
Marine). Compare with the high-efficiency Terran, Zerg AI seemed have difficulty to destroy our scout unit, the 
reason is build-in Zerg always produce unmovable defensive buildings first, which gives the scout unit plenty 
space and time to survive. Although the survive time is long enough for a bot to finish the scout task, it is still not 
comparable to a skillful human player. 
 
4.3    Competition 
 
The first StarCraft AI competition was at the AIIDE 2010 (AAAI conference on Artificial Intelligence and 
Interactive Digital Entertainment). At the event, there were more than 26 teams registered. Our bot first joined the 
StarCraft AI competition on CIG 2012 (IEEE Conference on Computational Intelligence and Games), as our first 
trial, our bot only placed 9th out of 10 teams. From CIG 2012, we improve our bot a lot although it still a heavily 
rule based system in conjunction with potential field and heuristic methods. 

This time, we sent our bot to SSCAI 2012 (Student StarCraft AI Tournament) which was the second year of 
SSCAI tournament and had 52 participants from all over the world, including strong bots from the BWAPI Ladder 
(BWAPI Ladder, 2012) and team developed bots. The tournament was divided into two divisions: 
 
 Student division: Round Robin tournament, where everybody played one game with each other, and ranked by 

their score (3 points for winning a game, 1 point for a tie and 0 point for losing a game).  
 Mixed division: Elimination bracket of 8 best bots. 
 

Although there were only few fixed strategies set in our bot, by applying heuristic methods to predict enemy 
strategies based on partial information gathered from scouting, our bot has revealed its advantages in this 
competition. For instance, it had taken a defensive strategy when played against KillerBot in the semifinal, who is 
a strong Zerg bot by applying priority state machine and highly ranked in the BWAPI Ladder, is considered as the 
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best counter measure to an aggressive bot because lots of bots could not survive its powerful attack, see Figure 6. 
And in the final game, our bot had earned a neat victory by a prompt response to opponents early rush and seized 
a 
perfect timing to strike back. As the final result, our bot has won the first place in the mixed division and has 
ranked 4th in the student division, see Figure 7 and Figure 8. 
 

 
 
Fig. 6.  Our bot(White Terran) play against KillerBot(Green Zerg) in the semifinal of SSCAI 2012, our bot 
gained lots of benefits by taking a defensive strategy 
 

 
 

Fig. 7. The elimination bracket for top eight bots  
 
5.  CONCLUSION AND DISCUSSION 
 
In this paper, we have described the architecture of our bot and show the significance of scouting, enemy plan 
recognition and attack timing decision in the RTS game StarCraft. The approach we applied to the scout task is a 
potential field, which can be successfully used in RTS game as a mechanism for information gathering. In addition, 
we also proposed heuristic methods on opponent’s plan recognition and attack timing determination. The 
experiment results showed that our methods greatly improved the performance of AI bot. However, some 
shortages are still can be found in the current work. For example, in the potential field part, the scout unit was 
occasionally stuck and confused when facing several enemy units. And as far as attack timing determination is 
concerned, an incorrect estimate of the enemy’s fighting force leads to wrong attack timing still happens every 
now and then. The reason why is because the module relies on the scouting result too much, which means an 
inaccurate information might result in our army completely annihilated by enemy. 

In future work, we will focus on improving the performance of scouting unit, try to extend its alive time. And 
meanwhile add a prediction module to improve the timing decision, as well as reduce the reliance on the scout 
agent. Additionally, we plan to apply some machine learn algorithm to collaborate with current heuristic method 
for enemy plan recognition. 
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Fig. 8.  Our bot (blue Terran) in the final game, an example of our heuristic methods for strategy 
recognition and attack timing determination(from left to right, up to down). Our bot reacted quickly to 
enemy’s early rush, and seized a right timing to attack after a successful defense  
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