

Automatic Controller of Ms. Pac-Man and Its Performance:

Winner of the IEEE CEC 2009 Software Agent Ms. Pac-Man Competition

Ruck Thawonmas1 and Hiroshi Matsumoto1

1 Graduate School of Science and Engineering, Ritsumeikan University, Japan

Abstract—In this paper, we describe the outline of our Ms. Pac-Man controller, ICE Pambush 2, which is the winner of the IEEE
CEC 2009 Software Agent Ms. Pac-Man Competition. One striking feature of ICE Pambush 2 is its ability to lure ghosts and
ambush them. It is also equipped with improved image processing and decision making modules, leading to more than 8000 scores
higher than its predecessor, ICE Pambush, submitted to the previous competition in the IEEE WCCI 2008. In addition, the score of
ICE Pambush 2 is higher than those of controllers reported in the literature. At the time of writing this paper, ICE Pambush 2 is
holding the world records for both the maximum score of 24640 and the average score of 13059, among ten trials, in this series of
Software Agent Ms. Pac-Man Competitions.

Keywords— Ms. Pac-Man, controller, software agent, path finding, A*

1 Introduction

A series of Ms. Pac-Man controller competitions [1] have been
held recently as a benchmark for advancing artificial
intelligence and/or computational intelligence techniques. The
first competition was held in affiliation with IEEE CEC 2007.
We have participated in the competition since the second one at
IEEE WCCI 2008. In this paper, we describe the outline and
discuss the performance of our controller ICE Pumbush 2 which
was developed for the third competition held at IEEE CEC 2009
and won the competition [2].

Fig. 1. A screenshot of Ms.Pac-Man.

Ms. Pac-Man (Fig. 1) was made in 1981 as a variant of Pac-
Man. Main differences between these two are the appearance of
the player character, with Ms Pac-Man having the ribbon on its
head, and ghost behaviours, with ghosts in Ms. Pac-Man
behaving almost non-deterministically. Objects in the game
include Ms. Pac-Man, ghosts, pills, power pills, and items.
Major game rules are as follows:
(a) In order to finish a given stage and proceed to the next

stage, Ms. Pac-Man must eat all available pills and power
pills.

(b) The life value, initially set to 3, is decremented each time
Ms. Pac-Man is hit by a ghost, and the life value is added
by one when the score reaches ten thousand,

(c) If Ms. Pac-Man eats a power pill, all available ghosts
outside of the ghost cage will become edible for a

particular period; if Ms. Pac-Man eats an edible ghost, a
relatively high score can be earned.

(d) If Ms. Pac-Man eats an item, a score can be earned
according to the item type.

Fig. 2. Game map partition.

As shown in Fig. 2, the game map for all game stages
consists of 28 x 31 grids, where each grid is composed of 8 x 8
pixels. Each stage has different objects and a map layout. All
moving objects, i.e., Ms. Pac-Man, ghosts, and items, move
along their paths in a pixel level.

 ICE Pumbush 2 consists of two parts: one executed when
the controller starts and the other executed iteratively for
deciding which direction to move. The former part is done at the
image processing module described in detail later. The latter one
copes with controlling of Ms. Pac-Man movements. Because
information in the game screen is updated every 67 milliseconds
(ms), there exists a time constraint in the decision making
process. This leads to a need for a strategy balancing the quality
of decision results and the computation time. ICE Pambush 2’s

RT
Text Box
Proc. Asia Simulation Conference 2009 (JSST 2009), October7-9，2009, Shiga，Japan.

mechanisms employed in these two modules have been
significantly improved, from those of its predecessor ICE
Pambush, in order to meet the aforementioned time constraint.

The contributions of this paper are as follows:
(1) Description of the ICE Pambush 2’s efficient image

processing module,
(2) Description of the ICE Pambush 2’s effective decision

making module, and
(3) Other useful information for new comers to facilitate their

participation to the competition.

2 Image Processing

We proposed two mechanisms: on for speeding up the
acquisition of the map information and the other for enabling
effective movements between the corresponding warp points.
The basic idea behind the former one is to detect all non-moving
objects only once in the beginning of the game and iteratively
trace the moving ones during the game. For the latter
mechanism, the game map used in our controller is an extended
version of the one shown in Fig. 1 by concatenating the right
half of the original map + the original map + the left half of the
original map. With this extended map (Fig. 3), our Ms. Pac-Man
will go through a warp point of interest if its target location is
near the corresponding warp point on the other side. The first
mechanism contributes to a fast decision making time of 30 ms,
compared with the previous version of 60 ms in ICE Ambush
when the original map and the rules in ICE Ambush were used,
and the second one contributes to more effective movements
than ICE Ambush.

Fig. 3. The extended map used in ICE Ambush 2.

For acquisition of the map information, object detection is
performed during a raster scan of all grids (each with 8 x 8
pixels) in the extended map. In the first scan, in order to derive
the map layout, all pills, power pills, and path grids are detected
by matching them with the patterns shown in Fig. 4. Then the
landmarks in the map, all corners and warp points, as well as the
ghost cage are detected. All of these objects are no longer
considered in the subsequent scans, each of which is performed
at the beginning of every iteration; when a pill or power pill is
eaten by Ms. Pac-Man, the corresponding grid will be simply
changed to a path grid. Thereby, the target recognition objects in
a subsequent raster scan are limited to Ms. Pac-Man and all
ghosts outside of the cage, leading to much less computation
time, compared to our previous version of object recognition
considering all objects in each scan.

Fig. 4. Patterns of the pill, power pill and path gird.

However, since all moving objects move in a pixel level, as
mentioned earlier, a measure must be taken to enable detection
of them in a grid level. We do this by counting the number of

object colors, in terms of the number of pixels, in a grid of
interest and locating to the grid a particular object if the grid’s
most representative color is similar to that of the object by
meeting a specific threshold. Although misdetection slightly
occurs, this mechanism for detection of the moving objects
reduces computation time and gives room for the decision
making process described in the next section.

3 Decision Making

Our controller moves Ms. Pac-Man over the path with the
lowest cost by sending the mouse-click command directing to
the next corner or cross point. To ensure Ms. Pac-Man makes a
turn of its direction properly in time, the mouse-click command
with the direction to the second next corner or cross point will
also be issued in advance if necessary. We adopted two variants
of the A* algorithm [3], versions one and two, to find the
lowest-cost path between Ms. Pac-Man and the target location,
where the Manhattan distance is used and represented in the
grid unit.

3.1 Rules

At every decision-making iteration, one of the following seven
rules (in decreasing priority) is fired.

#Rule 1:
If distance(nearest_power_pill) ≦ 5(3)
AND
distance(nearest_ghost) ≧ 4(4)
AND
distance(ghost_nearest_to_the_nearest_power_pill) ≧ 6(4),
then stop moving and ambush at the corner or cross point near

the nearest power pill waiting for a ghost to come closer,
where distance(nearest_power_pill) is the distance from Ms.
Pac-Man to the nearest power pill, distance(nearest_ghost) the
distance from Ms. Pac-Man to the nearest ghost, and
distance(ghost_nearest_to_the_nearest_power_pill) the distance
from Ms. Pac-Man to the ghost nearest to the power pill nearest
to Ms. Pac-Man, and the numbers in the parentheses are those
for the second stage of the game.

#Rule 2:
If at least one power pill exists
AND
distance(nearest_ghost) ≦ 8
AND
distance(nearest_power_pill) ≦ 6
AND
distance(nearest_power_pill) ≦

distance(ghost_nearest_to_the_nearest_power_pill),
then move to the nearest power pill with the A* version two.

#Rule 3:

If at least one power pill exists
AND
distance(nearest_ghost) ≦ 8
AND
distance(nearest_power_pill) ≦

distance(ghost_nearest_to_the_nearest_power_pill),
then move to the nearest power pill with the A* version one.

#Rule 4:

If at least one edible ghost exists
AND
distance(nearest_ghost) ≦ 8
AND
distance(nearest_edible_ghost) ≦ 8,
then move to the nearest edible ghost with the A* version one,
where distance(nearest_edible_ghost) is the distance from Ms.
Pac-Man to the nearest edible ghost.

#Rule 5:
If distance(nearest_ghost) ≦ 8,
then move to the nearest pill with the A* version one.

#Rule 6:

 If at least one edible ghost exists
AND
distance(nearest_ghost) ≧ 9
AND
distance(nearest_edible_ghost) ≦ 8,
then move to the nearest edible ghost with the A* version two.

#Rule 7:

If distance(nearest_ghost) ≧ 9,
then move to the nearest pill with the A* version two.

Figure 5 shows screenshots where Ms. Pac-Man ambushes

ghosts at the left-bottom corner according to Rule 1 (a), moves
to the nearest power pill according to Rule 2 (b), and moves to
the nearest ghost according to Rule 6 (c) (d). A YouTube video
clip of ICE Pambush 2 is also available at [4]

To find a path, the A* version one considers the distance
cost, the ghost cost, and the node cost while the A* version two
considers only the distance cost, where cost definitions are given
in the next subsection. The former version of A* is used in more
critical situations, such as when a ghost is nearby, than the latter
one. In addition, the depth of search is also different between
these two versions. The n depth indicates that the search space
covers all paths from the current grid of Ms. Pac-Man to the n th
corner or cross point in the same quarter of the target location,
with the constraint that the distance from Ms. Pac-Man to the i
th corner or cross point is always larger than that of the i-1 th
one. In particular, the search depth of the A* version one and
two is 3 and 10, respectively.

3.2 Cost Definitions

Costs are defined such that Ms. Pac-Man can manage to reach
the target location without being hit by a ghost. The definition of
each cost is given below, and the costs below are accumulated
for the corresponding corner or cross point.

#Distance Cost at point X:
= [distance(X) + distance(X_to_target) – distance(target)]*1000,
where X is the i th-level search corner or cross point from Ms.
Pac-Man, i = 1 to 3 (A* version one) or 1 to 10 (A* version two),
distance(X) is the distance from Ms. Pac-Man to X,
distance(X_to_target) is the distance from X to the target
location, and distance(target) is the distance from Ms. Pac-Man
to the target location.

#Ghost Cost I at point X away from ghost Y:
= 500,000/[distance(Y_to_X)^2],
where X = the i th corner or cross point from ghost Y, i = 1 and 2,
and distance(Y_to_X) is the distance from ghost Y to point X.

 # Ghost Cost II at a corner or cross point where there is a

ghost on it:
= 1,000,000

#Ghost Cost III at a corner or cross point behind a ghost

moving on the same straight path as Ms. Pac-Man:
= 6,000,000

Corner Cost at each corner:

 = 5,000

The above corner cost is for suppressing Ms. Pac-Man from

moving to an area with many corners because of a high chance
in being trapped by ghosts there.

(a)

(b)

(c)

(d)

Fig. 5. Ambushing of ghosts.

4 Performance Evaluation

Table 1 shows the scores that ICE Pambush and ICE Pambush 2
obtained at the IEEE WCCI 2008 competition [5] and IEEE
CEC 2009 competition [2], respectively. Therein, the average
and maximum scores were derived from 10 games executed at
the organizer environment, a Dell XPS laptop. From the
competition result in [2], ICE Pambush 2 is the winning entry
among the five submitted controllers. Figure 6 shows the score
histograms of ICE Pambush 2 and the second place controller,
Max Chan. In addition, ICE Pambush 2 is so far holding the
world records for both average and maximum scores for all
three competitions [1] as shown in Table 2. Its scores are also
superior to those reported in the literature [6-9].

Table 1. Comparison between ICE Ambush and ICE Ambush 2.

Version Average Scores Maximum Scores
ICE Ambush

(IEEE WCCI 2008)
4694 6390

ICE Ambush 2
(IEEE CEC 2009)

13059 24640

Fig. 6. Score histograms of ICE Pambush 2 and Max Chan.

Table 2. Comparison between the winning entries of three competitions.

Competition Average Scores Maximum Scores
IEEE CEC 2007

(Default)
2269 3810

IEEE WCCI 2008
(USM)

11167 15970

IEEE CEC 2009
(ICE Ambush 2)

13059 24640

5 Conclusions and future work

This paper described the outline of our Ms. Pac-Man controller,
ICE Pambush 2, which is the winning entry of the IEEE CEC
2009 Software Agent Ms. Pac-Man Competition and the world
record holder for this series of competitions. Its high
performance is due to the efficient image processing
mechanisms and the effective decision making mechanisms.
However, compared to the world record of 921360 made in 2005
by a human player, a large number of challenging issues for
improvement of the controller remain.

At the time of writing this paper, Evolutionary Strategy has
been adopted in our new controller, to be submitted to the IEEE
CIG 2009 competition, for optimizing a number of parameters
in use such as cost constants and distance thresholds. In near
future, we plan to explore learning techniques such as those in
[7] and [8] as well as examine the technique in [9]. A variety of
other artificial intelligence and/or computational intelligence
techniques will be exploited in order to shrink the gap between
the best automatic controller and the best human player of Ms.
Pac-Man.

Acknowledgements

The authors would like to express our deepest gratitude to Yuna
Dei for his contributions to bot development. We wish to thank
also the organizer of the Software Agent Ms. Pac-Man
Competition for their hard work.

References

[1] Ms. Pac-Man Competition,
http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html

[2] Ms. Pac-Man Competition IEEE CEC 2009 Result,
http://cswww.essex.ac.uk/staff/sml/pacman/CEC2009Results.html

[3] I. Millington. Artificial Intelligence for Games. The Morgan
Kaufmann Series in Interactive 3D Technology, 2006.

[4] YouTube video clip of ICE Pambush 2,
http://www.youtube.com/watch?gl=JP&hl=ja&v=nrpCVy-PPyo

[5] Ms. Pac-Man Competition IEEE WCCI 2008 Result,
http://cswww.essex.ac.uk/staff/sml/pacman/WCCI2008Results.ht
ml

[6] S. M. Lucas. Evolving a neural network location evaluator to play
Ms. Pac- Man. In IEEE Symposium on Computational Intelligence
and. Games 2005, pp. 203-210, 2005.

[7] I. Szita and A. Lorincz. Learning to Play Using Low-Complexity
Rule-Based Policies: Illustrations through Ms. Pac-Man. In the
Journal of Artificial Intelligence Research, 30, pp. 659-684, 2007.

[8] H. Handa. Constitution of Ms.PacMan Player with Critical-
Situation Learning Mechanism. In Fourth International Workshop
on Computational Intelligence & Applications IEEE SMC
Hiroshima Chapter (IWCIA 2008), pp. 48-53, 2008.

[9] N. Wirth and M. Gallagher. An Influence Map Model for Playing
Ms. Pac-Man. In IEEE Symposium on Computational Intelligence
and Games (CIG'08), pp. 228-233, 2008.

[10] Ms. Pac-Man world record broken (2005),ken
http://uk.gamespot.com/news/2005/08/11/news_6130815.html?sid
=6130815

