
2017 IEEE 10th International Workshop on Computational Intelligence and Applications
November 11-12, 2017, Hiroshima, Japan

Feature Extraction of Gameplays for Similarity
Calculation in Gameplay Recommendation

Kazuki Mori∗, Suguru Ito∗, Tomohiro Harada†, Ruck Thawonmas† and Kyung-Joong Kim‡
∗Graduate School of Information Science and Engineering

Ritsumeikan University, Kusatsu, Shiga, Japan
Email: {is0191kh, is0202iv}@ed.ritsumei.ac.jp

†College School of Information Science and Engineering
Ritsumeikan University, Kusatsu, Shiga, Japan

Email: harada@ci.ritsumei.ac.jp, ruck@is.ritsumei.ac.jp
‡Dept. of Computer Science and Engineering

Seoul, South Korea
kimkj@sejong.ac.kr

Abstract—This paper proposes a method for extrac-
tion of relevant features that represent a gameplay
and are needed in gameplay recommendation. In our
work, content based filtering (CBF) is adopted as the
recommender algorithm. CBF exploits a heuristic that
the user’s previous ratings of items, gameplay clips in
our case, can be used to derive the rating of an unrated
similar item. In this work, in order to calculate the
similarity between a pair of gameplays, a kind of au-
toencoder called Denoising Autoencoder is employed.
Our experimental results confirm that the method can
successfully extract features, based on which the re-
sulting similarity between a pair of gameplays matches
with their content and human perception.

Index Terms—Procedural Play Generation; Recom-
mender Systems; Denoising Autoencoder;

I. Introduction
A gameplay clip is a video clip displaying the content of

a game played by human or even AI players. At present,
gameplay clips have been frequently uploaded or streamed
to video sharing or streaming platforms such as YouTube
or Twitch, some of which have around 10 million daily
active users or spectators watching such clips. As a result,
gameplay clips have been considered as promising new
media, and recently Procedural Play Generation (PPG)
[1] has been proposed with the objectives of automatically
(procedurally) generating gameplays and recommending
them to spectators. This work focuses on the recommender
part of PPG.

A recommender is a system that selects and presents
needed information, among a large amount of information,
to users. Such systems are nowadays used in a variety of
web sites such as the aforementioned video portal sites
or social networking service sites. They can be divided
into two categories: collaborative filtering (CF) [2], which
is based on previous ratings by other users on items
including an item of interest, and content based filtering
(CBF) [3], which is based on the features of an item of

interest, such as color or shape, and previous ratings of a
targeted user to other items. Since one of the objectives of
PPG is to procedurally generate a brand new gameplay,
a recommender technique that fits this purpose is the one
that can be performed for new items, or gameplays in our
case, with no previous ratings. Hence, CBF that has an
ability to do so is used in this work.

In CBF, in order to be able to calculate the similarity
between a given pair of items, their features must be
derived. Typically, this is done by, for example, manu-
ally tagging such an item by some keywords. However,
this approach is not viable in PPG where gameplays are
seamlessly generated by AI [4]. In this work, we, therefore,
propose a method for automatically extracting relevant
features from a gameplay.

II. Related Research
Typical existing work on video recommendation include

Davidson et al. [5] and Gomez-Uribe & Hunt [6], which
both aimed at creating a list of recommended videos to
the users based on their viewing log. In the former work,
the similarity between a pair of videos was defined by the
number of times that they were both watched by users.
The system recommends to a user of interest the top N
videos that have the highest similarity to a seed video
watched by the user. In the latter work, besides a con-
ventional CF algorithm that recommends videos that have
the highest predicted values, a number of other algorithms
were used to increase the diversity in recommendation
results, such as those considering seasonal factors (Christ-
mas event etc.) and tag information. However, both of the
aforementioned work did not consider the content of each
video.

Sifa et al. [7] proposed a system for recommending video
games. In their work, information on games that each user
played and on time that each user spent to each game was
used for deriving features on relations between games and

978-1-5386-0469-4/17/$31.00 ©2017 IEEE

RUCK
テキストボックス
 pp. 171-176

Fig. 1. A screenshot of FightingICE

users. These features were then used to predict the playing
time that a user of interest will spend on each unplayed
game which will be recommended to the user in decreasing
order of predicted playing time. This kind of analysis is
called player profiling [8], which can also be applied to
player behavior prediction and cheating detection, etc.
However, the work by Sifa et al. did not consider other
factors, such as play contents, besides playing time.

Procedural Content Generation (PCG), compared to
recently proposed PPG, is a more established and broader
area focuses on automatic generation of game contents
[9]. According to a recent definition [10], game contents
targeted by PCG can cover a variety of components such
as levels, maps, card textures, and stories. However, PCG
typically does not either aim to generate a gameplay or
target spectators. PCG’s main targets are that of enter-
taining game players or that of assisting game developers
while PPG targets spectators.

In regard to recommendation of gameplay clips, there
exist previous studies [11][12]. In those studies, StarCraft,
a real-time strategy game, was targeted. In the former
study, game features were defined by exploiting the game
domain knowledge, resulting in not only global features,
such as the total number of actions (game events) by the
player, but also local features that store information on
the first timestamp of each unit production or building
construction. In the latter study, Restricted Boltzmann
Machine (RBM) was used in feature extraction, where the
input images of RBM were reconstructed from a variety
of information about units and buildings from replays
at a timing of interest. Our present work is similar to
[11] in that the game domain knowledge is exploited to
determine which information should be used in defining
the game state. However, in this work, a deep learning
network is applied to such information directly, rather
than to reconstructed images as done in [12], for extracting
relevant information that represents a whole gameplay.

III. FightingICE
Although the proposed feature extraction method can

be applied to any games, at the current stage of this
research, we use a 2d-action-fighting game called Fighting-
ICE (Fig. 1) [13]. This game has been used as a platform

for a game AI competition called the Fighting Game AI
Competition, held at IEEE Conference on Computational
Intelligence and Games since 2014. In this game, a round
lasts 60s and consists of 3600 frames. Until the 2016
competition, each character has an initial health point
(HP) of 0, and this value will be decreased upon receiving
an attack by the opponent. In the end of a round, the
character with a higher value of the remaining HP wins
the round.

FightingICE allows the AI developer to obtain the
game-state information at every frame, such as the posi-
tion and HP of each character. In order to make a challeng-
ing situation for AI research, a delay of 15 frames (around
0.25s) was introduced, roughly representing a delay in
response time of human players. However, since this work
focuses of recommenders, we remove this delay from the
system, enabling us to precisely obtain the current game
state at each frame.

IV. Game Information

As done in previous work [11], [12], we focus on game
information at each frame and use it to construct features
of a given gameplay. In particular, we use the information
on each character as follows:

• HP: The value of the HP of each character．
• ENERGY: The current value of the energy of each

character. A certain amount of energy is required to
perform some attack actions. The energy of a given
character increases when its attack hits the opponent
or when an attack of the opponent hits it.

• Position: The X and Y coordinates of each character.
• Speed: The horizontal and vertical speeds of each

character
• Action: A vector showing which action is currently

being performed among all 56 actions available in
FightingICE by each character. It is represented by
a one-hot vector of 56 bits.

• State: A vector showing the current state of each char-
acter among AIR, CROUCH, DOWN, and STAND in
FightingICE. It is represented by a one-hot vector of
4 bits.

• Positions of the 1st to 3rd Hadouken’s projectiles: The
current X and Y coordinates of the ith projectile of
Hadouken where i = 1, 2, 3 in launched order by each
character; if such a projectile does not exist, its coor-
dinates will be filled by “0”. Hadouken consumes some
amount of energy to release a projectile which moves
at a steady speed towards the targeted direction. If
Hadouken is performed n times, n projectiles will be
released, each of which lasts until a certain amount
of time has reached or until it hits the opponent.
According to the current specification of FightingICE,
at most three projectiles of each character can be
present on the screen.

Fig. 2. A representation of the input-vector. Here ”Pos” means
position.

The above information is obtained for each character per
frame. As a result, a vector of 144 dimensions is formed
to represent the game state at a frame of interest (Fig.2).

V. Feature Extraction
Figure 3 depicts an outline of the proposed feature

extraction method while Fig. 4 shows an architecture of
the autoencoder in use. Since there are two 56D one-hot
vectors among 144 dimensions of the input data per frame,
there is a need to extract relevant features out of them. For
this task, we use a kind of autoencoder called Denoising
Autoencoder (DAE) [14]. Our DAE is composed of an
input layer, a hidden layer, and an output layer, where
the number of units in the hidden layer is set less than
that of the input one. The objective for training DAE is
that of minimizing the difference between the output and
the input as given in Equation (1):

min
W,V,b,µ

N∑
i=1

(xi − x̂i)
2 + λ(|W|2 + |V|2) (1)

Encoder : y = f(Wx̃ + b) (2)

Decoder : x̂ = g(Vy + µ) (3)

Here, N is the number of training frames for all considered
gameplays, x ∈ Rd is the input vector, y ∈ Rk is the
representation of x on lower-dimensional space, x̂ ∈ Rd is
the output vector, resulting from reconstruction of x from
lower dimensional y, W ∈ Rk×d and V ∈ Rd×k are the
weights from the input layer to the hidden layer and those
from the hidden layer to the output layer, respectively.
In addition, b and µ are biases, f(·) and g(·) are the
activation functions in use, and λ is a hyper parameter.
For DAE, noises are added to x, resulting in x̃ that will be
the actual input to the network, see Equation (2), rather
than x in the standard autoencoder.

After training, the output from the hidden layer of the
trained DAE for each frame will be combined by mean
pooling 3, resulting in a feature vector of 144 dimensions
that represent a given gameplay.

Fig. 3. A conceptual diagram of the proposed feature extraction
method

VI. Experiments

We evaluate features extracted by the proposed method
by examining whether the similarity, calculated based on
the resulting features, between a pair of similar gameplays
is high, or low for a pair of dissimilar ones.

A. Data Set
In our experiments, we use all AIs submitted to the

2016 Fighting Game AI Competition, excluding those that
could not be run which results in 11 AIs. For these 11 AIs,
we conduct a round-robin tournament, where each game
is limited to only one round and 11 games played by the
same AI at both sides are also included, and obtain 121
gameplays, resulting in N = 435600.

B. Data Normalization
We perform normalization to the elements correspond-

ing to HP, ENERGY, Position, Speed, and Position of
the 1st to 3rd Hadouken’s projectiles in the input vector
so that each of them has a mean of 0 and variance of 1 as
follows:

xni
← xni − x̄n

σn
(4)

where n is the corresponding element in the input vector
and i = 1, 2, . . . , 435600.

Fig. 4. An architecture of DAE

Fig. 5. Visualization results of the similarity between gameplays calculated based on features extracted by three methods

C. Training of DAE
All frames in each of the 121 gameplays are used for

training the DAE. Masking noise is applied to each of
the 144 input elements of DAE with a probability of
0.25. A sigmoid function and a linear function are used
at the hidden layer and the output layer, respectively.
The number of hidden units is set to 20 while that of
both input and output layers is set to 144. All weights
are initialized by a uniform distribution having the range
of [− 1√

n
, 1√

n
], where n is the number of units at the lower

layer. Stochastic gradient descent is used as the optimizer.
The learning rate α and the hyper parameter λ are both
empirically set to 0.005. In addition, in order to alleviate
the effect of weight initial values, we train DAE 10 times
and use the average similarity among these 10 trials for
each pair of gameplays.

D. Experiment 1
Here, we visualize the similarity between every pair of

gameplays and compare three methods. The first one uses
the mean of the 144D input vector over 3600 frames to
represent a gameplay of interest (henceforth called RAW)．
The second one, PCA, uses principle component analysis
to generate a 20D vector from each frame’s 144D input
vector and derives the mean vector to represent a game
player of interest. The third one is the proposed method
and is henceforth called DAE. Cosine similarity is used
for calculating such similarity and the more the similarity
is closer to 1 the darker color it becomes.

Figure 5 shows the visualization results of RAW (left),
PCA (center) and DAE (right). Both rows and columns
are indexed by the ID of a gameplay. All sub-figures have
the darkest color on their diagonal, on which the similarity
between the same content is visualized. However, DAE
shows clearer color shades for other pairs of gameplays, for
example, as shown in the area bounded by a red rectangle.

Figure 6 shows a zoomed version of the aforementioned
area for each method where two white horizontal lines
can be readily seen near the middle of DAE’s block, but

not in the other blocks.Each line corresponds to a pair
of gameplays in one of which both AIs stand at their
initial position and repeat their action because they are
implemented based on simple rulebase.In other words,
each pair consists of a gameplay where both AIs move and
fight and a gameplay where both AIs do not move. As a
result, the similarity should be low for such a pair. Since
such lines can not be observed in either RAW’s block
or PCA’s block, it can be said that DAE extracts more
relevant features than the other two methods.

E. Experiment 2
In this experiment, we examine if human perception

on similar gameplays correlates with the cosine similarity
based on features extracted by DAE. In particular, we
conduct a user study where 13 participants, all college
students with the age of 21 to 26 years, are each tasked
with subjectively assessing the similarity of nine pairs
of gameplay clips presented to them. The experiment’s
protocol in detail is as follows:

1) All gameplays where both characters do not move
from their initial position are removed in advance.
(Note that they are not removed in Experiment 1)

2) Each three of the nine pairs of gameplay clips in use
are selected from the pairs of remaining gameplays
that have the highest similarity (Highest), the least
similarity (Least), and the similarity nearest to 0.5
(Middle), respectively.

Fig. 6. Zoomed results of the area bounded by the red rectangle in
Fig. 5

TABLE I
Spearman’s rank correlation coefficient between the

average score by the participants and the cosine similarity
based on features extracted by RAW, PCA, and DAE,

respectively, where p is shown in the parentheses.

  RAW PCA DAE
0.201 (0.604) 0.435 (0.242) 0.843 (0.004)

3) Since a round lasts 60s, to reduce a burden in
watching gameplay clips, all selected gameplays are
captured at 2X speed.

4) The selected nine pairs of gameplay clips are pre-
sented to each participant in a random order.

5) Each participant evaluates a given pair in a Likert
scale as “Similar”, “Somewhat similar”, “Not very
similar”, and “Not similar”, having the score of 4, 3,
2, and 1, respectively. During evaluation, the par-
ticipant can arbitrarily replay any or both gameplay
clips from any timing.

Figure 7 shows the resulting score for each category. It
can be seen that the participants’ ratings correspond to
the similarity calculated based on the features extracted
by DAE. We conduct a Kruskal-Wallis test against these
categories and find that there is a significant difference
between them (p < 0.01).

In addition, Table I shows Spearman’s rank correlation
coefficient between the average score by the participants
and the cosine similarity based on features extracted by
RAW, PCA, and DAE, respectively, for the above nine
pairs. According to the results in this table, the associa-
tion is statistically significant between the participants’s
average score and the DAE’s similarity, but not for the
others.

In addition, we show a sequence of screen shots (at 5s,
15s, and 30s) for a pair having the least similarity and
the highest similarity in Figs. 8 and 9, respectively. In the
top row of Fig. 8, one can see that both characters (AIs)
keep a certain distance and release Hadouken’s projectiles
to each other as long as they have enough energy while

Fig. 7. Average score for each category of gameplay pairs by 13
participants

Fig. 8. Series of screenshots for two dissimilar gameplays1,2. For the
sake of visibility, the grey background is used here． 

both characters are close-range fighters in the bottom one.
In Fig. 8, those screen shots indicate that all involving
characters are close-range fighters.

A finding that we draw from the results is the proposed
method can extract gameplay features, based on which the
resulting similarity of a given pair of gameplays matches
with human perception.

VII. Conclusions and Future Work
As a part of PPG, in order to be able to recommend

gameplay clips to spectators, a method was proposed for
extracting relevant features from a gameplay. From the re-
sults of two conducted experiments, it was confirmed that
the method could successfully extract features, based on
which the resulting similarity between a pair of gameplays
matched with their content and human perception.

In the future, we will incorporate visual information
from the game screen to the method and consider a way
to handle temporal information residing in a sequence of
frames forming a round. In addition, although a fighting
game was considered in this work, we plan to extend the
proposed method to other game genres, using, for example,
research-oriented game platforms for Angry Birds [15] and
Zelda [16].

Acknowledgment
This research was partially supported by Basic Science

Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (2017R1A2B4002164) and by
Strategic Research Foundation Grant-aided Project for
Private Universities (S1511026), Japan.

References
[1] R. Thawonmas and T. Harada, “AI for Game Spectators: Rise of

PPG,” AAAI 2017 Workshop on What’s next for AI in games,
San Francisco, USA, pp. 1032–1033, Feb. 2017.

[2] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, 42(8), pp. 30–37,
2009.

1https://www.youtube.com/watch?v=hDu-zHBxz88
2https://www.youtube.com/watch?v=QwcVWW03yjQ
3https://www.youtube.com/watch?v=DPnYayZLuUw
4https://www.youtube.com/watch?v=J1vKNQUnTTs

Fig. 9. Series of screenshots for two similar gameplays3,4

[3] M.J. Pazzani and D. Billsus, “Content-based recommendation
systems,” The Adaptive Web, LNCS 4321, pp. 325–341, 2007.

[4] S. Ito, et al., “Procedural Play Generation According to Play
Arcs Using Monte-Carlo Tree Search,” Accepted for presen-
tation at the 18th annual European GAMEON Conference
(GAMEON’2017), Carlow, Ireland, Sep. 2017.

[5] J. Davidson, et al., “The YouTube video recommendation sys-
tem,” Proc. of the fourth ACM conference on Recommender
systems (RecSys’10), Barcelona, Spain, pp. 293–296, Sep. 2010.

[6] C.A. Gomez-Uribe and N. Hunt, “The netflix recommender sys-
tem: Algorithms, business value, and innovation,” ACM Transac-
tions on Management Information Systems, 6(4), article no. 13,
2016.

[7] R. Sifa, C. Bauckhage, and A. Drachen, “Archetypal Game Rec-
ommender Systems,” Proc. of the 16th LWA Workshops: KDML,
IR and FGWM, Aachen, Germany, pp. 45–56, Sep. 2014.

[8] R. Sifa, A. Drachen, and C. Bauckhage, “Profiling in Games:
Understanding Behavior from Telemetry” Social Interaction in
Virtual Worlds. Cambridge University Press, 2017. (in press)

[9] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup.
“Procedural content generation for games: A survey,” ACM
Transactions on Multimedia Computing, Communications, and
Applications, 9(1), article no. 1, 2013.

[10] A. Summerville, et al. “Procedural Content Generation via
Machine Learning (PCGML),” arXiv:1702.00539, Feb. 2017.

[11] H.T. Kim and K.J. Kim, “Learning to recommend game con-
tents for real-time strategy games,” Proc. of 2014 IEEE Con-
ference on Computational Intelligence and Games (CIG 2014),
Dortmund, Germany, Aug. 2014.

[12] H.T. Kim, Deep learning for game contents recommendation in
real-time strategy games. Master’s thesis, Department of Com-
puter Engineering, the Graduate School, Sejong University, Feb.
2015.

[13] http://www.ice.ci.ritsumei.ac.jp/ ftgaic/ (last accessed on Au-
gust 10, 2017).

[14] P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol, “Ex-
tracting and composing robust features with denoising autoen-
coders,” Proc. of the 25th International Conference on Machine
learning (ICML’08), Helsinki, Finland, pp. 1096–1103, Jul. 2008.

[15] https://aibirds.org/ (last accessed on August 10, 2017).
[16] N. Heijne and S. Bakkes, “Procedural Zelda: A PCG Envi-

ronment for Player Experience Research,” Proc. of the 2017
International Conference on the Foundations of Digital Games
(FDG’17), Hyannis, MA, USA, Aug. 2017.

