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Abstract—At present, one can acquire a great deal of trajectory 
data as positioning technology has prevailed and become 
sophisticated. In accordance with this fact, data mining 
technology for extracting important information and knowledge 
from trajectory data is gaining recognition. Clustering of 
trajectories and giving meanings to movements are active areas 
of research. In this paper, we focus on the Markov chain model 
for representing trajectory data and propose a method for 
defining states that can cope with the distinguished characteristic 
of each trajectory and a method for comparing trajectories 
transitioning over different sets of states in the Markov chain 
model. From an experiment using real trajectory data, we 
confirm the advantage of the proposed approach over others. 

I. INTRODUCTION  
In recent years, because positioning technology such as 

GPS and wireless network has become widely available, one 
can acquire moving objects' trajectories, such as those of 
people or vehicles, easily. In accordance with this fact, data 
mining technology for extracting important information and 
knowledge from trajectory data is gaining recognition. 
Clustering of trajectories, extracting features or relationship of 
trajectories, and approximating time-series data are active areas 
of research. This type of spatial-temporal data mining is 
applicable to not only the area of movement locus analysis but 
also to many other areas such as clustering of object shapes and 
images. 

Important issues in the study of trajectories of mobile 
objects include (i) determining the distance or similarity among 
trajectories, (ii) clustering the trajectories based on distance or 
similarity indices, (iii) finding the meaning in each mobile 
object movement. A main objective of this study is to enable 
understanding the current status of a mobile object of interest. 
Another objective is to predict the next action or position of a 
given mobile object. Our research findings have wide 
applicability. If this study is applied in order to find a set of 
basic motions of human, an architect can design a building 
based on this set. In home security, one can find a suspicious 
individual whose trajectory is too different from a pre-derived 
set of basic motions.  

In the area of movement trajectory analysis, a number of 
methods were previously proposed that express and compare 

trajectories by state transitions. They divide target space into 
multiple areas and define these areas as states. Each trajectory 
is then expressed by a set of transitions between these common 
states. However, this approach has two problems: (1) some 
trajectories are overly approximated and (2) small movements 
in a given state cannot be expressed exactly. Although these 
problems can be solved by increasing the number of states, this 
leads to an increase in computational cost and thus degrades 
performance. We argue that the target space should be divided 
into suitable states for each trajectory and a method is needed 
to compare trajectories modeled by transitions in different state 
sets. 

In this paper we propose a method for defining states that 
can cope with the distinguished characteristic of each trajectory. 
The proposed method adopts dynamic space division based on 
the quadtree representation. In addition, we propose a method 
for comparing user trajectories that uses two clustering steps: 
one based on coordinate data and the other based on state 
transitions. The former clustering step uses the Hamming 
distance between a pair of quadtrees, each being represented as 
a bit sequence, as distance measure.  Resulting clusters are 
used in the latter clustering step.  In each cluster, a Markov 
chain model for each of its trajectories is built, and the latter 
clustering is performed for these trajectories based on a 
proposed distance measure. Dynamic space division enables 
elucidation of trajectory details and prevention of trajectory 
over-approximation. In addition, two-step clustering leads to 
less computational costs and easier interpretation of clustering 
results. 

II. RELATED WORK  
In order to compare player trajectories in Massive 

Multiplayer Online Game (MMOG), the following method was 
proposed in [1], as an improved version of the method in [2]. 
First, a quadtree is generated based on states derived through 
dynamic space division using all players’ trajectories. 
Landmarks in the given map are then defined based on the 
density of coordinate data of all trajectories. Each trajectory is 
approximated by the state transition probabilities between 
landmarks. Finally, such transition probabilities of each pair of 
trajectories are compared and used for clustering players. The 
speed of this method is fast, but the method might overly 
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approximate trajectories. In addition, when players exist whose 
trajectories are errant, this method loses accuracy. 

In the area of mobile-object tracking, the work in [3] 
adopted the Markov chain model for modeling the mobility 
statistic. In order to conduct multidimensional analysis, data-
cube like logical representation of mobility histogram was 
introduced. Under this representation, each state is represented 
by a unique number based on Z-ordering. Binary representation 
for these unique numbers is used to represent a state transition 
of interest, and adjustment when comparing transitions among 
states of different depths, drill-down or roll-up, is performed. 
To build the histogram, a tree structure was introduced. 
Adaptive extension of the tree is implemented, which enables 
memory decrement. However, time for building the histogram 
can be a bottleneck when a great number of mobility objects 
are monitored. 

The work in [4] also proposed a comparing method based 
on the Markov chain model.  This work decides states 
manually according to the layout of a real store. It aims at 
detection of outliers. In order to detect a person who has an 
errant trajectory, a detection method was proposed which has 
two steps. First, each trajectory is modeled by transitions 
between Markov chain states, and probabilistic distances 
between trajectories are evaluated. Users who have high 
distances to the others are considered outliers and are removed. 
Remaining trajectories are projected into lower dimensional 
space by multidimensional scaling. In this new space, 
trajectories are clustered, and outliers are additionally detected 
using the likelihood of trajectories. K-means is used for the 
clustering task where the initial centroids are those minimizing 
the distortion within clusters. For determining the number of 
optimal clusters, the rating index proposed in [5] is used. 
However, multidimensional scaling makes it difficult to locate 
reasons behind results. 

III. PROPOSED METHOD 
In [1-4], in order to use the Markov chain model, a 

common set of states is defined based on all trajectories. In 
general, important areas and the number of coordinate data at 
each divided area are different for each trajectory. To cope with 
these issues, we argue not to use a common set of states for all 
trajectories but to generate and use an individual state set for 
each trajectory. However, comparison of trajectories modeled 
by different state sets is difficult. Thereby, we propose to adopt 
the roll-up mechanism in [3] for this task. 

A. Dynamic map division based on quadtree 
For each trajectory, the map is divided from trajectory data 

distribution.  Let D indicate the level of division. First, the 
initial state (D = 0) is divided into four areas. For each area, its 
data density is evaluated, and it will be further divided into four 
areas if the density is higher than a given threshold (Fig. 1). 

In the above operation, dynamic map division is 
implemented by the quadtree, where a node represents an area. 
The initial state is the root of the tree with node number = 0, 
then extension of the tree corresponds to map division. If there 
are some nodes that have no trajectory, all such nodes will be 
deleted (Fig. 2). 

B. Distance measure for quadtrees 
Each node in a quadtree is assigned a unique number based 

on Z-ordering. Because Z-ordering is used by all trajectories, a 
same node number indicates the same area. 

Comparing a pair of quadtrees is done through comparing 
bit sequences that represent the quadtrees. The n-th bit 
indicates existence or nonexistence of the n-th node. If the n-th 
bit is 1, the n-th node exists; otherwise, the n-th node does not 
exist (Fig. 3).  

In Fig. 4, DistAB shows the distance between two quadtrees 
A and B and is defined as the Hamming distance between the 
corresponding two bit sequences. This distance is used in the 
1st-step clustering as an element in the )1()1( −×− NN  
distance matrix, where N is the number of trajectories. 

C. 1st-Step clustering based on coordinate data 
Here, all trajectories are clustered with the Ward method 

[6] based on the aforementioned distance matrix. The number 
of clusters is decided with the rating index introduced in [5]. 
Any cluster with the number of members less than ten percent 
of N is excluded because we consider them outliers.  

D. 2nd-Step clustering based on state transitions 
In each cluster, time-series trajectory data are changed into 

state-transition data based on the Markov chain model, where a 
leaf node represents a state. Because quadtrees are different 
from one trajectory to another, the positions of non-empty 
elements in the state-transition matrices are also different. To 
compare a given pair of different quadtrees, we need to derive 
a common structure from them. This can be achieved by 
logical multiplication of the corresponding two bit sequences 
(Fig. 5). 

Deriving the common tree structure of quadtrees leads to 
degradation of trajectory representation. Thereby, all related 
transition probabilities have to be adjusted. This adjustment 
corresponds to the roll-up algorithm in [3]. The transition 
probabilities related to a common node of interest are adjusted 
as follows:  

i) In the case where both the source and the destination of 
the transition are a common node resulting from roll-up, 
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ii) In the case where only the source of the transition is a 
common node resulting from roll-up, 
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iii) In the case where only the destination of the transition is 
a common node resulting from roll-up, 
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where axy is the transition probability from state x to y, l’ 
indicates the common node resulting from roll-up, A(l’) 
contains the indices to all unified nodes involving in 
calculation of the transition probability to or from l’. In Fig. 5 
if l’ is 3, A(3) contains 15, 16, 56, 57 and 58. As a result of roll-
up, an intermediate node might become a state. For example, in 
Fig. 5, intermediate nodes 4 and 8 become states after roll-up. 

Next, the distance between two trajectories after roll-up is 
defined as the average in the differences in the elements of the 
corresponding transition matrices.  This distance is used as an 
element of the distance matrix in the 2nd-step clustering. 
Because the division level is different from area to area and 
some areas might have lost the detail, we need to give weights 
to the transition probabilities in accordance with D as follows: 

 
max

max 1
D

DDw l
l
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where Dl is the division level of area l, and Dmax is the 
maximum level of D. The aforementioned distance between 
trajectories i and j is given as  
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where alm(x) is the transition probability from states l to m in 
trajectory x, and hnum indicates the number of common states 
between i and j. If Dmax after roll-up is 0, the distance between 
these particular two trajectories will be given the maximum 
possible value of (5), i.e., 2. 

After obtaining the distance matrix for a cluster of interest, 
the trajectories in this cluster will be further clustered using the 
same method as described in Ⅲ.C. 

 

 
Figure 1 Dynamic map division from trajectory data distribution. From left to 
right D=1, D=2, D=3. 

 

 
Figure 2  Illustration of transformation of a divided map into a quadtree and 

illustration of node deletion, where the number in each area here is the number 
of coordinate data in the trajectory. 

 

 
Figure 3  From a quadtree to a bit sequence. 

 

 
Figure 4  Example of the distance matrix: N=4. 

 
Figure 5 Illustration of derivation of a common tree structure for two different 

quadtrees A and B, where the node number is shown in each area. The area 
with no number does not contain any coordinate data in the trajectory. 

 

 
Figure 6 Examples of trajectories for players and bots (Top-left: player, Top-
right: Crbot, Bottom-left: Ice , Bottom-right: Eraser). 
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IV. EVALUATION  
We conducted an experiment on a trajectory data set of a 

First-Person Shooting game called QuakeⅡ. This set of data 
[7] consists of movement data from human players and three 
kinds of bots (Fig. 6). The number of trajectories is 171 
consisting of 105 players and 66 bots of three types: 25 Crbots, 
21 Erasers and 20 Ices. To evaluate the effectiveness of our 
approach, three other methods are used. One is dynamic map 
division based on all trajectories data that divides a map of 
interest according to all trajectories data distribution, considers 
each divided area as a state, and computes transition 
probabilities between states for each trajectory [1]. The other 
two methods are the one that clusters the trajectory data with 
only the first-step clustering (III.C) and the one with only the 
second-step clustering (III.D), respectively. In our experiment, 
we adjusted Dmax to 5 and the threshold for dividing map to 
5%. 

For showing the quality of derived clusters, we show the 
entropy of player types summed for all clusters in Table 1. The 
above results show that the entropy of our method is 0, 
indicating no existence of mixed player types in any derived 
cluster. In addition, use of each of the other methods cannot 
correctly divide players. Although not shown here, dynamic 
map division based on all trajectories correctly divided players 
and bots, but could not correctly cluster bots into proper types.  

Table 2 shows the detail of the result from our method for 
both steps. The 1st column is the cluster number of the 1st-step 
clustering, and the 2nd column shows the cluster number of the 
2nd-step clustering. C, E and I stand for Crbot, Eraser and Ice 
bots, respectively. H(k) shows the entropy of cluster k. The 4th 
cluster of the 1st-step clustering includes very different 
trajectories from others. Because the number of these 
trajectories is lower than ten percent of the number of all 
trajectories, these trajectories were not considered in the 2nd-
step clustering. Note that the 2nd-step clustering contributes to 
correct clustering of data according to player types.  

V. CONCLUSIONS AND FUTURE WORK 
The above results show that our method correctly clusters 

and classifies trajectories into human players as well as Crbot, 
Eraser and Ice Bots. Although dynamic map division based on 
all trajectories could roughly classify the trajectories, it could 
not categorize bots into each type. In our method, the 1st-step 
clustering roughly classified the trajectories, and the 2nd-step 
clustering finely classified them. Note that use of the 1st-step 
clustering only cannot correctly divide players and that use of 
the 2nd-step clustering only will take much longer time.  

Movement speed can also be derived from trajectory data in 
order to find the detail meaning in each mobile object 
movement. In future, we plan to incorporate speed information 
into our method and to extend the method to three-dimensional 
space. We also intend to experiment with many other kinds of 
data, such as traffic data, real human trajectories, MMOG 
player movements.  
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TABLE 1    Result of four clustering methods 

Method Entropy 

Dynamic map division for all trajectory data 1.58 

1st-step clustering 1.56 

2nd-step clustering 1.59 
Our Method 0 

 

TABLE 2   Detail of clustering results. 

Number of members H(k) 
1st 2nd player C E I 1st 2nd

1 
1 27 0 0 0 

0 
0 

2 9 0 0 0 0 

2 
1 9 0 0 0 

0 
0 

2 31 0 0 0 0 

3 
1 9 0 0 0 

0.83
0 

2 0 25 0 0 0 
4 1 15 0 0 0 0 0 

5 
1 5 0 0 0 

0.72
0 

2 0 0 0 20 0 

6 
1 0 0 13 0 

0 
0 

2 0 0 8 0 0 

 

11371137


